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ABSTRACT

Context. Thermal conductivity is one of the important mechanisms of heat transfer in the solar corona. In the limit of strongly
magnetized plasma, it is typically modeled by Spitzer’s expression where the heat flux is aligned with the magnetic field.
Aims. This paper describes the implementation of the heat conduction into the code MANCHA3D with an aim of extending single-
fluid MHD simulations from the upper convection zone into the solar corona.
Methods. Two different schemes to model heat conduction are implemented: (1) a standard scheme where a parabolic term is added
to the energy equation, and (2) a scheme where the hyperbolic heat flux equation is solved.
Results. The first scheme limits the time step due to the explicit integration of a parabolic term, which makes the simulations com-
putationally expensive. The second scheme solves the limitations on the time step by artificially limiting the heat conduction speed
to computationally manageable values. The validation of both schemes is carried out with standard tests in one, two, and three spa-
tial dimensions. Furthermore, we implement the model for heat flux derived by Braginskii (1965) in its most general form, when
the expression for the heat flux depends on the ratio of the collisional to cyclotron frequencies of the plasma, and, therefore on
the magnetic field strength. Additionally, our implementation takes into account the heat conduction in parallel, perpendicular, and
transverse directions, and provides the contributions from ions and electrons separately. The model recovers Spitzer’s expression for
parallel thermal conductivity in the strongly magnetized limit but also transitions smoothly between field-aligned conductivity and
isotropic conductivity for regions with a low or null magnetic field. We describe the details of the implementation of Braginskii’s
thermal conductivity using a combination of the first scheme for the perpendicular and transverse directions and the second scheme
for the parallel component. We estimate thermal conductivities in a quiet-Sun model. In this model, we find that the perpendicular and
transverse components for electrons and ions and the parallel component for ions might have some significance below the transition
region. Above the transition region only the parallel component for ions might be important. Finally, we present a two-dimensional
test for heat conduction using realistic values of the solar atmosphere where we prove the robustness of the two schemes implemented
and show that our adaptation of the hyperbolic treatment offers a great advantage over the computational cost of the simulations.
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1. Introduction

Thermal conductivity is an essential physical process by which
pressure and temperature perturbations are spread out through
a plasma. It corresponds to a macroscopic manifestation of a
transport process (energy transfer by particle collisions) and its
strength depends on the temperature and temperature gradient.
It plays an important role in diverse range of conditions from
those found in thermoelectric materials (Yu et al. 2022; Liu et al.
2022) to supernova remnants (Balsara et al. 2008). In the solar at-
mosphere, thermal conduction is one of the dominant processes
that shapes the dynamics of the hot plasma (Ye et al. 2020). For
instance, it contributes to the energy redistributions in plasma
eruptions (Bradshaw et al. 2012; Liu et al. 2009; Ye et al. 2020;
Navarro et al. 2021). Heat conduction is a key aspect in the nu-
merical analysis of the coronal heating problem (Bingert & Peter
2011; Gudiksen et al. 2011; Bingert & Peter 2013; Bourdin et al.
2013; Chen et al. 2014).

The ratio of the collisional frequency to the cyclotron fre-
quency, which depends on the magnetic field, determines the
direction of the heat flux with respect to the magnetic field di-
rection. In the corona, where the magnetic field is strong and the
collision frequency is low, the thermal conduction is aligned with

the magnetic field and is commonly modeled by Spitzer’s ex-
pression for fully ionized plasmas. Likewise, Braginskii (1965)
developed a more complete description of the heat flux which
depends on the ratio between the cyclotron frequency and the
collisional frequency of the plasma. In his model, the heat flux
is decomposed into three parts, a parallel component, a perpen-
dicular component and a transverse component, each of them
for ions and electrons. Therefore it allows a smooth transition
between field-aligned conductivity and isotropic conductivity in
regions with a low or null magnetic field or regions with high
collisional frequency. Furthermore, the parallel component of
the electron heat flux has roughly the same value as the Spitzer’s
expression. Accordingly, Braginskii (1965) model is appropriate
for the description of the complete solar atmosphere.

Modeling the thermal conductivity numerically is a chal-
lenging endeavor since explicit solvers for a parabolic
problem lead to very small time-steps according to the
Courant–Friedrichs–Lewy (CFL) condition in comparison to a
hyperbolic problem defined by ideal magnetohydrodynamics
(MHD) equations. Different schemes have been developed to
overcome this restriction, for instance: Super Time-Stepping
methods (Meyer et al. 2012) (used in the MPI-AMRVAC code,
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see Xia et al. 2018), implicit–explicit schemes (Balsara et al.
2008), semi-implicit directionally-split methods (Sharma &
Hammett 2011; Ye et al. 2020), symmetric and asymmetric dis-
cretization schemes (Günter et al. 2005; Parrish & Stone 2005).
With the same purpose, Rempel (2017) and Warnecke & Bingert
(2020) introduced an efficient way to deal with the numerical
time step constraints by solving the hyperbolic equation for the
heat flux for the MURAM and PENCIL codes respectively. In
the current work, we implemented into the code MANCHA3D
(Felipe et al. 2010; González-Morales et al. 2018; Khomenko
et al. 2018) a combination of both schemes, the hyperbolic equa-
tion to evolve the parallel to the magnetic field component of the
heat flux, and the parabolic equation for the perpendicular and
transverse directions.

The paper is organized as follows. In Section 3 we describe
two different schemes for the implementation of thermal con-
ductivity in the code. From Sections 4.1 to 4.4 we validate the
numerical schemes with different tests in one, two and three di-
mensions. The general Braginskii heat flux is presented in Sec-
tion 5, we describe its implementation in the code and compare
the thermal conductivity in parallel, perpendicular and transverse
directions, from ions and electrons in a quiet Sun stratified at-
mosphere. Finally, in Section 5.1 we propose a two-dimensional
test with a realistic solar stratified atmosphere and in Section 6
we present our conclusions.

2. Brief description of the MANCHA3D code

MANCHA3D is a three-dimensional numerical code designed
to simulate complex dynamics of the solar atmosphere plasma.
It solves the non-linear MHD equations taking into account non
ideal effects as the ambipolar diffusion, Hall effect, the battery
effect and radiative losses, although, in the simulations that are
described in this work, such effects are not taken into account. A
gravitationally stratified plasma in the ideal regime can be repre-
sented by the following set of equations

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

∂B
∂t

= ∇ × (v × B) , (2)

∂(ρv)
∂t

+ ∇ ·

[
ρvv +

(
p +

B2

2µ0

)
I −

BB
µ0

]
= ρg , (3)

∂e
∂t

+ ∇ ·

[(
e + p +

B2

2µ0

)
v −

B
µ0

(B · v)
]

= ρv · g , (4)

where ρ is the density, v is the velocity, p is the gas pressure, B
is the magnetic field, g is the gravitational acceleration, e is the
total energy per unit volume and I is the identity tensor The dot
“·” represents the scalar product of vectors, while the notation
“BB” stands for the tensor product.

In the code, the equations are discretized with a centered
finite differences scheme of sixth order and integrated in time
with an explicit Runge–Kutta method. For numerical stability,
the code uses hyperdiffusivity and filtering. A more complete de-
scription of the code can be found in the works of Khomenko &
Collados (2006, 2008); Felipe et al. (2010); González-Morales
et al. (2018); Khomenko et al. (2018).

3. Numerical schemes for thermal conductivity

The effects of thermal conductivity can be represented by adding
the divergence of the heat flux vector q into the energy equation

(4). Accordingly, the new equation for the energy reads as

∂e
∂t

+ ∇ ·

[(
e + p +

B2

2µ0

)
v −

B
µ0

(B · v)
]

= ρv · g − ∇ · q .(5)

In the strongly magnetized limit, for the fully ionized plasma,
the heat flux is aligned with the magnetic field

q = −κ‖∇‖T = −κ0T 5/2b̂
(
b̂ · ∇

)
T , (6)

where b̂ is the unit vector along the magnetic field and the term
(b̂ · ∇T ) represents the temperature gradient along the magnetic
field, κ|| is the parallel conductivity and κ0 is a constant that de-
pends on the properties of the plasma. This equation is referred
as Spitzer’s thermal conduction vector (Spitzer 1956).

The integration time step of a fully explicit finite difference
method is limited by the CFL condition. For the heat conduction
problem, the value of the limiting time step can be obtained by
comparing the time-derivative and the thermal conduction terms
in the energy equation, assuming no variations in density and the
ideal gas law

∂e
∂t
≈

(γ − 1)κ0T 7/2

p
∇2e , (7)

therefore, the time step is given by

dt ≤ cflTC
min(∆x,∆y,∆z)2

max((γ − 1)κ0T 7/2/p)
, (8)

where ∆x, ∆y and ∆z are the grid sizes and cflTC is a stability
constant that takes values of 0.5, 0.5 and 1/3 for 1D, 2D and 3D
cases, respectively.

In some cases, the thermal conduction time step can become
much smaller than the time step given by the MHD CFL condi-
tion. To overcome this difficulty, Rempel (2017) and Warnecke
& Bingert (2020) proposed to solve the hyperbolic equation for
the heat flux instead of the classical parabolic equation, i.e.,

∂q
∂t

=
1
τ

(
− fsatκ0T 5/2

(
b̂ · ∇

)
T − q

)
, (9)

∂e
∂t

= [. . . ] − ∇ ·
(
qb̂

)
. (10)

The factor fsat sets the saturation of the conductive heat flux,
preventing it from taking highest values, and τ is the relaxation
time. Following Fisher et al. (1985) and Meyer et al. (2012) the
saturation factor can be written as

fsat =

1 +
|κ0T 5/2

(
b̂ · ∇

)
T |

1.5ρc3
s


−1

, (11)

where cs =
√
γp/ρ denotes the speed of sound and γ is the adi-

abatic index.
The hyperbolic heat-conduction equation corresponds to the

modification of the classical Fourier heat flux by the addition of
an additional extra thermal inertia term. This modification was
proposed independently by Vernotte (1958) and Cattaneo (1958)
in order to suppress the paradox of the infinite speed of propaga-
tion of the heat conduction in the Fourier theory, and implying
the existence of thermal waves. This approach has been widely
studied, both theoretically and experimentally, see Abdel-Hamid
(1999) and references therein.

In Eq. 9 the relaxation time depends on the mechanism of
heat transport, and represents the time lag needed to establish
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steady-state heat conduction in an element of volume when a
temperature gradient is suddenly applied to that element (Abdel-
Hamid 1999). Different definitions for the relaxation time are
proposed by Rempel (2017) and Warnecke & Bingert (2020),
however they do not allow stable running of all our samples,
therefore we use a fixed value for the relaxation time, τ = 4dt in
Eq. 9.

4. Tests for validation of the numerical scheme

4.1. One-dimensional problem

For the first test, we have considered the following one-
dimensional heat conduction problem proposed by Rempel
(2017). The initial non-equilibrium temperature profile is given
by

T0(x) = 0.1 + 0.9x5 , (12)

in non-dimensional units. In these units, we use density ρ = 1.0,
magnetic field Bx = 1.0, By = Bz = 0.0, and thermal conduc-
tivity coefficient κ0 = 1.0. The domain extends over 0 ≤ x ≤ 1
and is covered by 250 points. The boundary conditions set all the
quantities to be fixed in time. The asymptotic stationary solution
is given by

T (x) =
[
0.13.5 +

(
1 − 0.13.5

)
x
]2/7

. (13)

To analyze this problem, we perform four different simula-
tions. On the one hand, we have performed a run with a standard
parabolic scheme (we will refer to this scheme as scheme #1
over the paper), where we solve the equations (1), (2), (3) and
(5) using the field-aligned heat flux

q = − fsatκ0T 5/2b̂
(
b̂ · ∇

)
T . (14)

Here we have included the saturation factor fsat given by (11) to
the Spitzer heat flux (6). This is needed for consistency in com-
parison of the simulations with different schemes. On the other
hand, we run simulations with the hyperbolic scheme using three
different time steps, dt = dtTC, dt = 50dtTC and dt = 100dtTC.
We will refer to the latter one as scheme #2.

Figure 1 shows different stages of the time evolution, t =
0.25, t = 0.5, t = 0.75 and t = 1.0 for all the simulations. The
solid black lines represent the initial state (t = 0) and the asymp-
totic solution (13). In all the cases, the reference solution is re-
covered around t = 1 and the intermediate steps of the evolution
of the temperature are quite similar between different simulation
cases. It should be emphasized that the temperature evolves with
the same speed for both parabolic and hyperbolic schemes, be-
cause both schemes use the same saturation factor. It decreases
the magnitude of the heat flux enhancing stability of the code.
Without the saturation factor, the temperature evolves faster with
respect to the simulation time, but it requires a smaller time step
for a stable run. This faster evolution is clearly shown at left
panel of Figure 1. The saturation factor allows running simula-
tion with much larger time step, however if the time step is too
high, the simulation becomes unstable, as shown in the top left
panel of Figure 6.

To estimate the accuracy of our results, we compare them to
the reference solution (13). Table 1 presents the errors L1, L2 and

Method dt L1 L2 L∞

scheme #1 dtTC 7.53×10−3 7.25×10−4 6.86×10−2

scheme #2 dtTC 9.67×10−3 8.37×10−4 6.86×10−2

scheme #2 50dtTC 1.26×10−2 1.03×10−3 7.42×10−2

scheme #2 100dtTC 1.88×10−2 1.36×10−3 8.58×10−2

Table 1. Errors L1, L2 and L∞ for the one-dimensional conduction test.

L∞, computed according to the following definitions,

L1
N =

1
N

∑
i=1,N

|Ti − T ref
i | , (15)

L2
N =

1
N

√∑
i=1,N

|Ti − T ref
i |

2 , (16)

L∞N = max(|Ti − T ref
i |) , (17)

where N is the total number of points in the domain. We com-
puted the values of L1, L2 and L∞ at t = 1. The Table gives
values for the simulations with the different schemes and, for the
scheme #2, the values for large time steps are presented. The
errors slightly increase between scheme #1 and #2, and also in-
crease for larger time steps. However, they stay withing the same
order of magnitude. It suggests that we can speed up the simula-
tions using the hyperbolic treatment and still get rather accurate
modeling of thermal conduction problems.

4.2. Two-dimensional Static Ring

The ring diffusion test proposed by Parrish & Stone (2005) is
a standard test to evaluate the monotonicity properties of the
anisotropic conduction. The setup consists of hot patch diffusing
in a fixed circular-shaped magnetic field. This test is important to
check the numerical schemes since the magnetic field lines align
in all possible angles with respect to the Cartesian grid.

The initial temperature is given by

T =

{
12 if 0.5 < r < 0.7 and 11

12π < θ <
13
12π

10 otherwise , (18)

in non-dimensional units, where r =
√

x2 + y2 and tan θ = y/x.
The density is constant and set to ρ = 1, and the circular mag-
netic field is given by

Bx = 10−5 cos(θ + π/2)/r , (19)
By = 10−5 sin(θ + π/2)/r . (20)

Initially, the system is at rest with vx = vy = vz = 0. To study
this problem we use a numerical box of the size [−1, 1]× [−1, 1],
covered by 200 × 200 points, we evolve only energy equation
with a parallel thermal conductivity to κ‖ = 0.01, and outflow
boundary conditions. We run this problem using the scheme #1
with dt = dtTC and, to evaluate the scheme #2, we performed
simulations using the time steps dt = dtTC and dt = 10dtTC,
dt = 20dtTC, and dt = 30dtTC. Top panels of Figure 2 show
the colormaps of the temperature and the magnetic field lines at
the initial time moment (t = 0) on the left and at the final stage
(t = 400) on the right.

The bottom left plot of Figure 2 compares the temperature
at y = 0 for the different runs, and shows nearly identical re-
sults. The panel at the bottom right of Figure 2 displays the
computational times for the different numerical schemes and it
clearly demonstrates that the hyperbolic treatment is much more
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Fig. 1. Left panel shows the evolution of temperature in the one-dimensional thermal conductivity test computed with the scheme #1 (explicit
evolution of the parabolic term) and with the scheme #2 (hyperbolic equation for heat flux) with three different time steps. Right panel shows a
comparison between simulations using scheme # 2, one including the saturation factor of Eq. (11) and another one without it

efficient then the parabolic one. When we set the time factor
dt = 10dtTC the simulation is 10.2 times faster compared with
the scheme #1. Accordingly, when dt = 20dtTC the efficiency in-
creases 20.3 times and for dt = 30dtTC, 30.3 times. An unstable
example for this test is given at the top right panel of Figure 6,
which shows a colormap for a simulation computed with larger
timestep dt = 33dtTC. One can observe that an evident ringing
is produced in this case, since the time step is beyond the stable
limit.

According to the analytical solution, at advanced simulation
times, the interior of the ring should have a uniform temperature
of 10.1667 and outside the ring the temperature should be equal
to 10. In table 2 we provide the accuracy measures computed for
the final snapshot of our simulations (t = 400). We calculate the
maximum and the minimum temperatures in the domain, and the
error L1 for the maximum temperature by comparing it with the
reference value. The magnitudes of the error are within the same
order, which indicates that the results obtained with the different
schemes and time steps are similar with the results produced by
other codes, see Sharma & Hammett (2007); Xia et al. (2018)
and Meyer et al. (2012).

The perpendicular numerical diffusion may cause non-
negligible cross-field conduction. To estimate its value, we per-
form simulations with different explicit perpendicular conductiv-
ity κ⊥ and calculate the difference in the maximum temperature
between the final and initial stages, ∆T . Similar to the calcu-
lations in Meier et al. (2010). Figure 3 shows ∆T for different
values of κ⊥. The numerical data are fit with a hyperbolic tan-
gent function (solid line). We assign the perpendicular numerical
conductivity to the value of k⊥ at location where the first deriva-
tive of the hyperbolic tangent function is 100 times below the
maximum value of this derivative. The dashed line in Figure 3
corresponds to the value of ∆T in a simulation where explicit κ⊥
was set to zero (∆Tnum = ∆T (κ⊥ = 0)). It is shown in the plot
to compare visually the precision of the calculation. The ratio
between the numerical perpendicular conductivity and the phys-
ical parallel conductivity (κ⊥,num/κ‖) for the different simulations
is listed in the last column of Table 2. It is of the order ∼ 10−5,
which implies in one hand that we could not study the effects of
anisotropic conduction in laboratory plasmas since in that case
the ratio should be ∼ 10−9, otherwise perpendicular numerical

diffusion will swamp the true perpendicular diffusion. On the
other hand, since the ratio it is smaller than ∼ 10−3 it should be
adequate to study qualitatively the effects of anisotropic conduc-
tion on dilute astrophysical plasmas (Sharma & Hammett 2007).

4.3. Two-dimensional hot plate test

A two-dimensional test designed to evaluate the anisotropic heat
conduction along oblique magnetic field lines was proposed by
Jiang et al. (2012) and reproduced by Navarro et al. (2017). The
initial data consists of a small hot rectangular “plate” at the bot-
tom of the domain. The initial pressure is set to a homogeneous
value of p = 0.1, the system is at rest, vx = vy = vz = 0, and the
magnetic field is set constant and inclined by a 45◦ angle, i.e.,
Bx = By = 1, Bz = 0. The initial density is given by

ρ =

{
0.01 for |x| < 0.1 and y = −0.5 ,
0.1 elsewhere , (21)

in a domain extended over [−0.5, 0.5]×[−0.5, 0.5] with 200×200
points. The boundary conditions are periodic in x, fixed to the
initial values at the bottom surface at z = −0.5, and outflow at the
top. As before, we perform simulations with both schemes. For
the hyperbolic scheme, we use four times steps of dt = 10dttc,
dt = 100dttc, dt = 200dttc and dt = 500dttc. Figure 4 shows
the colormaps of the temperature and the magnetic field lines at
t = 1 for the different schemes. In all the cases the temperature
is advected along the magnetic field lines at the same pace and
with negligible transverse conduction. In order to compare the
differences in more detail, the left-bottom plot shows a 1D cut of
the temperature at y = −0.15. We find that all the numerical so-
lutions are quite similar. The right-bottom plot compares the cpu
times to the solution. It again confirms that the the hyperbolic
treatment produces very similar results with a great advantage
in computational time. For instance, for the run where the time
step is dt = 10dttc times larger, the solution is 8.23 times faster.
Similarly, the efficiency ratio for the factors 100, 200, and 500
are 76.57, 156.7 and 405.9, respectively. In these simulations the
advection time step is 1550 times larger then the conduction one.
An example of an unstable simulation for this test is given in the
bottom left panel of Figure 6. It displays a colormap in a simu-
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Fig. 2. Two-dimensional static ring problem. Top panels show colormaps of the temperature and magnetic field lines at the initial and final states.
The bottom left panel shows a comparison of the temperature at y = 0 between the different simulations at the final stage. Bottom right panel gives
a graphical representation of the computational times.

Method N × N dt Tmax Tmin L1 κ⊥,num/κ||
scheme #1 200 × 200 dtTC 10.166776 9.999981 7.600×10−5 1.5755×10−5

scheme #1 300 × 300 dtTC 10.16678 10.0 8.016×10−5 1.2305×10−5

scheme #1 400 × 400 dtTC 10.166782 10.0 8.188×10−5 1.0867×10−5

scheme #1 500 × 500 dtTC 10.166783 10.0 8.288×10−5 1.0085×10−5

scheme #2 200 × 200 10dtTC 10.166772 9.999979 7.226×10−5 1.5751×10−5

scheme #2 300 × 300 10dtTC 10.16678 10.0 8.007×10−5 1.2305×10−5

scheme #2 400 × 400 10dtTC 10.16678 10.0 8.050×10−5 1.0866×10−5

scheme #2 500 × 500 10dtTC 10.166783 10.0 8.293×10−5 1.0085×10−5

scheme #2 200 × 200 20dtTC 10.166769 9.999979 6.941×10−5 1.5751×10−5

scheme #2 300 × 300 20dtTC 10.166779 10.0 7.881×10−5 1.2305×10−5

scheme #2 400 × 400 20dtTC 10.166781 10.0 8.120×10−5 1.0866×10−5

scheme #2 500 × 500 20dtTC 10.166782 10.0 8.247×10−5 1.0085×10−5

scheme #2 200 × 200 30dtTC 10.166767 9.999981 6.737×10−5 1.5751×10−5

scheme #2 300 × 300 30dtTC 10.166778 10.0 7.755×10−5 1.2305×10−5

scheme #2 400 × 400 30dtTC 10.16678 10.0 8.050×10−5 1.0866×10−5

scheme #2 500 × 500 30dtTC 10.166782 10.0 8.202×10−5 1.0085×10−5

Table 2. Accuracy values for the two-dimensional static ring problem for different sets of simulations varying the methods used, the time steps, and
the resolution. In the fourth and fifth columns, the maximum and minimum temperatures at the final stage (t = 400) are given. The sixth column
gives the error L1 for the maximum final temperature, obtained by comparing with the reference value T = 10.1667 . Last column provides the
ratio between the numerical perpendicular conductivity and the explicit parallel conductivity of k|| = 0.01.

lation using a time step beyond the stability limit (dt = 500dttc),
a clear ringing is present from an early stage.

4.4. Three-dimensional Static Ring

A 3D generalization of the static ring problem was proposed by
Xia et al. (2018). Starting from the set up described in section

4.2, we extend the hot patch over a width of 0.4 in z direction.
The whole system, including the magnetic field, is rotated by
π/4 around the x-axis and by π/4 around the z-axis. This ro-
tation causes a misalignment between the field and the coordi-
nate axes, so that the thermal flux evolves in the three dimen-
sions. We run four different simulations in the numerical box of
[−1, 1] × [−1, 1] × [−1, 1] with 200 × 200 × 200 points. The first
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Fig. 3. Graphical representation of the method used to calculate the nu-
merical perpendicular conductivity. The dots represent the final maxi-
mum temperature minus initial maximum temperature (∆T ) in the sim-
ulations with different values of k⊥, shown at the horizontal axis. The
dashed line is the difference of temperature (∆Tnum) in the simulation
with κ⊥ = 0. We fit the data to a hyperbolic tangent function (solid
line). The numerical perpendicular conduction coefficient κ⊥,num, is esti-
mated by locating the position where the first derivative of the fit is 100
times smaller than its maximum value.

one is with the scheme #1, and remaining three are with scheme
#2 with time steps dt = 10dtTC, dt = 20dtTC, dt = 30dtTC and
dt = 40dtTC.

Top panels of Figure 5 present a contour of the temperature
together with magnetic field lines at the initial and last stage of
the simulation with scheme #1. Bottom left panel allows us to
compare the results between the different runs showing the tem-
perature at x = −0.5 and y = 0.21 at the final stage t = 400. One
can observe that there is a slight difference in the temperature
profiles. In particular, the runs with the scheme #2 with larger
time step (dt = 20dttc and dt = 30dttc) exhibit less perpendicu-
lar dissipation since the maximum values of the temperature in
those cases are bigger. Additionally, the bottom right panel of
Figure 5 displays the computational times for the simulations,
showing the big advantage in computational times of the hyper-
bolic treatment. In these simulations the advection time step is
150 times larger then the conduction one. For the simulation
where the time step is dt = 10dttc, the efficiency ratio is 4.9.
Similarly, the efficiency ratio for the factors 20 and 30, are of
9.45, and 14.6 respectively. An example of a unstable simulation
using scheme #2 is presented in bottom right panel of Figure 6,
which shows a ringing produced by the large time step, in this
case, dt = 45dttc.

Table 3 presents the maximum temperature reached at the fi-
nal stage and provides the L1 error computed by comparing this
maximum temperature with the theoretical value T = 10.1667.
The values of the error are quite similar in the different sim-
ulations and with the results obtained in the 2D case, proving
that the code resolves with sufficient accuracy three-dimensional
thermal conduction problems with complex magnetic field con-
figurations.

5. Thermal conduction in the solar atmosphere

In a magnetized plasma, the efficiency of the heat conduction de-
pends on the magnetic field direction. It is therefore convenient
to decompose the conductivity vector using the projections into

Method dt Tmax Tmin L1

scheme #1 dtTC 10.166782 9.999995 8.230×10−5

scheme #2 10dtTC 10.166781 9.999995 8.055×10−5

scheme #2 20dtTC 10.166779 9.999995 7.885×10−5

scheme #2 30dtTC 10.166777 9.999995 7.715×10−5

Table 3. Maximum temperature and error L1 for the three-dimensional
static ring problem from section 4.4.

the parallel and perpendicular to the field directions,

q = −κ‖∇‖T − κ⊥∇⊥T + κ×b̂ × ∇⊥T , (22)

where ∇‖ = b̂(b̂ · ∇) gives the parallel projection to the field,
∇⊥ = ∇ − ∇‖ gives the projection in the perpendicular direction,
and the last term is the projection in the transverse direction (sec-
ond perpendicular direction to the magnetic field). For example,
similar decomposition was recently used in Hunana et al. (2022).
Braginskii (1965) deduced the following general expressions for
the conductivity coefficients used in the expressions of the heat
conduction vector for electrons

κe
‖

= 3.1616
kB pe

νeime
, (23)

κe
⊥ =

kB pe

νeime

4.664x2
e + 11.92

x4
e + 14.79x2

e + 3.77
, (24)

κe
× =

kB pe

νeime
xe

5
2 x2

e + 21.67
x4

e + 14.79x2
e + 3.77

, (25)

and for ions,

κi
‖

= 3.906
kB pi

νiimi
, (26)

κi
⊥ =

kB pi

νiimi

2x2
i + 2.645

x4
i + 2.70x2

i + 0.677
, (27)

κi
× =

kB pi

νiimi
xi

5
2 x2

i + 4.65

x4
i + 2.70x2

i + 0.677
, (28)

where the subindices and upper indices e and i refer to electrons
and ions. The pressure and mass of each specie are pe, pi, me
and mi. The collisional frequency of ion-ion collisions is νii and
of electron-ion collissions is νei. The quantities xi and xe rep-
resent the ratio between cyclotron frequency (Ω) and collision
frequency (ν) for electrons and ions, respectively

xe =
Ωe

νei
; xi =

Ωi

νii
, (29)

where

Ωe = −
|e|B
me

; νei = 3.7 × 10−6 ln(Λ)ne

T 3/2
e

; pe = nekBTe , (30)

Ωi =
|e|ZiB

mi
; νii = 6 × 10−8 ln(Λ)niZ4

i

T 3/2
i

; pi = nikBTi , (31)

e is the electron charge, Zi is the charge of the ion, ne and ni the
electron and ion number density. All the definitions in SI units.
The Coulomb logarithm could be approximated by

ln(Λ) = 23.4 − 1.15 log10(ne) + 3.45 log10 Te , (32)

for Te < 50 eV, with ne given in cm−3 and Te in electronvolts.
It follows from these expressions that the case of null magnetic
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Fig. 4. Left top to right middle plot: colormaps of the temperature, together with magnetic field lines, at t = 1.0, obtained in the different
simulations, using scheme #1 and scheme #2 with the time steps dt = 10dttc, dt = 100dttc, dt = 200dttc and dt = 400dttc. The bottom left plot
shows a 1D cut of the temperature at z = −0.27, and the right bottom panel shows the simulation time for each run.

field the heat flux becomes isotropic (q = −k||∇T ) since xe =
xi = 0 and ki

⊥ = κe
‖
.

The parallel conductivity coefficients given in (23) and (26)
have a dependence on temperature as ∼ T 5/2 (this follows from
the dependence on temperature of the pressure and the collision
frequencies, see Eqs. 30, 31). The expression for the electron
heat flux is the same as given by Spitzer, after exchanging the
constant 3.203 for 3.1616 in Eq. 23). This dependence on tem-
perature is specially problematic due to the high temperatures of
the corona, when solving the thermal conductivity with an ex-
plicit integration method. We propose to combine the schemes
#1 and #2 by solving the energy equation, Eq. 5, where the heat
flux is given by

q = −q‖b̂ − κ⊥∇⊥T + κ×b̂ × ∇⊥T , (33)

with the hyperbolic equation for the evolution of the parallel heat
flux component q‖,

∂q‖
∂t

=
1
τ

(
fsatκ‖

(
b̂ · ∇

)
T + q‖

)
. (34)

In the latter expression, κ‖ is the conductivity coefficient in par-
allel direction to the magnetic field

κ‖ = κe
‖

+ κi
‖
, (35)

together which includes the contributions from electrons κe
‖

(23)
and ions κi

‖
(26), assuming Te = Ti = T , ne = ni and Zi = 1. Ac-

cordingly, κ⊥ is the conductivity coefficient in the perpendicular
direction to the magnetic field

κ⊥ = κe
⊥ + κi

⊥ , (36)
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Fig. 5. Results for the three-dimensional static ring problem. The top panels correspond to the contour of temperature at the initial and final stages,
together with the magnetic field lines, obtained with the simulation with scheme #1. Bottom left panel shows a comparison of one snapshot of the
temperature at x = −0.5 and y = 0.21 at t = 10 for different simulations using scheme #2 and different time steps. In the bottom right panel, a
graphical representation of the computational times of the different runs is given.

which includes the contributions from electrons κe
⊥ (24) and ions

κi
⊥ (27); κ× is the transversal conductivity coefficient, perpendic-

ular to both the magnetic field and the temperature gradient

κ× = κe
× + κi

× , (37)

and includes the contributions from electrons κe
× (25) and ions κi

×

(28).
Since q‖ is an independent variable, its initial value should

be calculated like

q‖(t = 0) = fsatκ‖
(
b̂ · ∇

)
T . (38)

The model above takes into account six different conductiv-
ity coefficients. It is of interest to compare the magnitude of the
terms as a function of height and magnetisation of the solar strat-
ified atmosphere. For that, the left panel of Figure 7 presents
those conductivities as functions of height, considering a strat-
ified atmosphere with the temperature model of Vernazza et al.
(1981) extended to the corona. We adopted the following ap-
proximate dependence for the magnetic field, appropriate for a
quiet solar region,

Bz = (100G) exp (−z/(6Mm)) . (39)

The results will of course vary if a different strength and strati-
fication for the magnetic field is adopted. However, the conclu-
sions below will remain qualitatively similar, since the depen-
dence of the conductivity coefficients on the thermodynamic pa-
rameters is much stronger.

According to the left panel of Figure 7, the parallel conduc-
tivity k‖ = ke

‖
+ ki

‖
is the most important one at all heights. Al-

though in the photosphere it is equal in magnitude to the perpen-
dicular one k⊥ = ke

⊥+ki
⊥, which has its largest values in the lower

atmosphere. The biggest contribution of the transverse conduc-
tivity k× = ke

× + ki
× is before the transition region, after, it drops

drastically and increases smoothly according to height. Now, to
determine specifically the contributions of each conductivity due
to electrons or ions, the right panel of Figure 7 provides the ra-
tios κi

‖
/κe
‖
, κe
⊥/κ

e
‖
, κi
⊥/κ

e
‖
, κi
×/κ

e
‖

and κe
×/κ

e
‖
. The ratios are computed

over the parallel conductivity of electrons (ke
‖
) which is the most

dominant at almost all heights. In this plot, we can see that below
the transition region (z = 2.1 Mm), the perpendicular conductiv-
ity of electrons (κe

⊥) is the second more important and is larger
than all the conductivities from ions. The parallel conductivity of
ions (κi

‖
) is proportional to the parallel conductivity of electrons

(κe
‖
) and is around one order of magnitude smaller. This might be

evident since we are assuming equal temperatures for both elec-
trons and ions to plot this figures. However, it shows that in the
corona, the parallel conductivity of ions (κi

‖
) is the second most

dominant. Additionally, both transverse conductivities for ions
and electrons (κi

× and κe
×) may contribute below the transition re-

gion. At other heights, the other components do not contribute
much in this atmosphere model since they are smaller than the
numerical perpendicular conductivity ratio of the code (∼ 10−5),
which was found in Section 4.2.

Article number, page 8 of 11



A. Navarro et al.: Modeling the thermal conduction with the code MANCHA3D

Fig. 6. Unstable examples of the tests using scheme #2 with time steps beyond the stability limit. Top left shows the temperature evolution in the
one-dimensional test with dt = 200dtTC. Top right presents a temperature colormap for the static ring problem using dt = 33dtTC and t = 100. The
bottom left panel shows a temperature colormap of the temperature for the hotplate test, using a time step dt = 500dttc. Bottom right panel shows
a contour of temperature in the three-dimensional static ring problem in an early stage, t = 5 s, using a time step dt = 45dttc.

Fig. 7. Thermal conductivity coefficients for a stratified solar atmosphere with the temperature model of Vernazza et al. (1981) extended to the
corona and a magnetic field for the quiet sun given by Eq. 39. Left panel: different components for ions and electrons. Right panel: ratios between
different conductivity coefficients and the parallel electron conductivity coefficient.

5.1. 2D test with a realistic solar temperature model

We present an adaptation of the hot plate test, discussed above in
Section 4.3, to a realistic density and temperature profile for the
solar atmosphere. This is done to verify the performance of our
implementation of the thermal conductivity using realistic high
temperatures of the solar corona. Including conductivity in such
model in the parabolic treatment decreases the time step three
orders of magnitude in comparison to the advective time steps.

The initial state consists of a stratified temperature profile of
Vernazza et al. (1981) smoothly joint to a constant-temperature
corona at 1.2 × 106 K. The pressure and densities are obtained

from the hydrostatic equilibrium equation and the ideal gas law

p(z) = p0 exp
(
−

mpg

kB

∫ z

z0

dz̃
T (z̃)

)
, (40)

ρ(z) =
mp

kB

p(z)
T (z)

, (41)

where mp is the proton mass, kB is the Boltzmann constant, p0 =
0.1 Pa and z0 = 10 Mm is a reference height. The magnetic field
strength is taken from Eq. 39, and we set it to be inclined by 45◦
degrees. The numerical domain extends over [−1, 1]× [0, 7] Mm
with 400×1400 points. We set a hot region at the top boundary
between x = −0.25 Mm and x = 0.25 Mm with a temperature
10% higher than the equilibrium. The boundary conditions are
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periodic in the x direction and fixed to the initial values at the
top and bottom.

We have evolved this setup using the scheme #1 with the
time step dt = dtTC, and with the scheme #2 we set the time
steps dt = 50dtTC and dt = 100dtTC. The top panels of Fig-
ure 8 display colormaps of the temperature and magnetic field
lines at t = 25 s obtained by the different schemes. It can be
observed that, as expected the hot temperature is advected along
the magnetic field lines: No important differences are observed
between the results obtained by the different schemes. The bot-
tom left panel shows a more detailed comparison of a 1D cut of
the temperature at x = −0.15 Mm, where we find that the solu-
tions exhibit a similar tendency. Finally, the bottom right panel
shows the cpu times for the different runs. The results suggest
that the hyperbolic treatment can model heat conductivity under
realistic coronal values, reducing significantly the computational
cost. In these simulations the advection time step was 2893 times
larger then the conduction one. For the simulation where the time
step is dt = 50dttc, the efficiency ratio was of 31.38, and when
dt = 100dttc it was of 60.1.

6. Discussion and conclusions

We have described the implementation of two numerical meth-
ods to model thermal conductivity in the code MANCHA3D.
The scheme #1 corresponds to the explicit evolution of the
parabolic heat flux term, which leads to very restrictive time
steps. Scheme #2 is a hyperbolic treatment of the heat flux which
allows the code to achieve considerably large speed-ups since it
solves a separate hyperbolic equation for the parallel heat flux.
Both schemes were tested in one, two and three spatial dimen-
sion by reproducing standard tests for anisotropic thermal con-
ductivity.

We used the general heat flux expressions derived by Bra-
ginskii (1965). This formulation recovers the commonly used
Spitzer expression in the limit of the strong magnetic field, but
also takes into account the effects of the conductivity perpen-
dicular and transverse to the magnetic field. The importance of
the latter conductivity coefficients depends on the ratio between
the collisional and cyclotron plasma frequencies, i.e. on plasma
magnetization. This implementation is needed for modeling the
whole solar atmosphere since it does a smooth transition be-
tween solar corona with remarkably anisotropic conductivity and
the lower regions with large plasma β and high collisionality
where the heat flux becomes isotropic.

We propose to use a combination of both schemes, the
parabolic treatment for the perpendicular and transverse conduc-
tivities and the hyperbolic treatment for the parallel conductivity,
which is the one that imposes strict time steps due to its depen-
dence on temperature. We show that in some regions of the at-
mosphere the perpendicular and transverse conductivities are not
negligible. Namely, below the transition region, the perpendic-
ular and transverse conductivities for ions and electrons might
increase the heat flux. We present a two-dimensional test for the
heat conduction in a stratified atmosphere, prove the robustness
of the implemented methods to model thermal conduction, and
confirm the significant speed up of the hyperbolic treatment over
the computational cost of the simulations.

Our adaptation is similar to the one previously considered in
the MURAM code (Rempel 2017) and the PENCIL code War-
necke & Bingert (2020). However, only the field aligned heat
flux is considered in these two codes, which is, strictly speaking,
valid only for the corona. In those works separate simulations
from different zones of the atmosphere are coupled. The heat

flux implemented in our code allows smooth transition from the
corona to the convection zone, bringing us one step closer to re-
alistic modeling of the solar atmosphere including the corona.

A drawback of the adaptation we have used is that the hyper-
bolic scheme slows down the temperature evolution in regions of
high temperature and low density like the corona, which would
normally slow down the code significantly, however this tem-
perature variation should not affect much the physical results, as
has been confirmed by (Rempel 2017) and Warnecke & Bingert
(2020). We also would like to point out that further analysis is
still needed, since we have not considered complex magnetic
configurations in an stratified atmosphere and we have not con-
sidered other non-ideal terms so far. In addition, an important
issue that needs to be addressed in such complex scenarios is is
how to increase correctly the magnitude of the timestep without
reaching the unstable limit for the hyperbolic scheme. This mat-
ter will be addressed in our next project, in which we will study
solar convection in a simulation box extended to the corona, fo-
cusing on the interplay between the thermal conduction, the ra-
diative losses and other non-ideal effects. We emphasize that the
scheme will allow running simulations of the whole atmosphere
with reasonable time steps, limited by advection processes be-
low the chromosphere and not by the thermal conduction in the
hottest part of the computational domain. Furthermore, we are
planning to extend this work with the self-consistent two-fluid
model developed by Hunana et al. (2022) which overcomes the
shortcomings of the Braginskii formulation in the weakly colli-
sional regime.
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